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Abstract: The Internet of Things (IoT) connects a wide range of objects and the types of environments
in which IoT can be deployed dynamically change. Therefore, these environments can be modified
dynamically at runtime considering the emergence of other requirements. Self-adaptive software
alters its behavior to satisfy the requirements in a dynamic environment. In this context, the concept
of self-adaptive software is suitable for some dynamic IoT environments (e.g., smart greenhouses,
smart homes, and reality applications). In this study, we propose a self-adaptive framework for
decision-making in an IoT environment at runtime. The framework comprises a finite-state machine
model design and a game theoretic decision-making method for extracting efficient strategies.
The framework was implemented as a prototype and experiments were conducted to evaluate
its runtime performance. The results demonstrate that the proposed framework can be applied to IoT
environments at runtime. In addition, a smart greenhouse-based use case is included to illustrate the
usability of the proposed framework.

Keywords: self-adaptive software; game theory; finite-state machine (FSM); Nash equilibrium;
Internet of Things (IoT)

1. Introduction

The technology of Internet of Things (IoT) is increasingly being developed owing to its growing
popularity. IoT connects several objects and can dynamically create various environments [1,2]. Certain
IoT environments include several requirements that must be dynamically satisfied at runtime (e.g., smart
greenhouses, smart homes, emergency handling systems, healthcare applications, sports applications,
and reality applications). Therefore, to support a dynamic IoT environment, an IoT framework must
execute appropriate decisions [3,4]. In this context, self-adaptive software can be applied to dynamic
IoT environments because it alters its behavior or structure in dynamic environments at runtime [5,6].
In addition, there have been several studies on the application of self-adaptive software in various
IoT environments such as inventory management systems [7], smart rooms [8], healthcare [9,10],
middleware [11], emergency handling systems [12], smart city [13,14], and IoT networks [15–17].
However, each study has its own aspects, distinct characteristics, and target domains. Game theory can
also be employed for decision-making in IoT environments with various requirements. Game theory
is a mathematical model of decision-making between different stakeholders [18,19]. It is employed in
economics, biology, and computer science [19–24]. Game theory helps to achieve an optimized decision
and, therefore, it is used in various applications involving decision-making in the field of computer
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science [19,21,23,25–27]. Accordingly, game theoretical methods can be used in IoT environments to
determine the optimal decision for different requirements.

In this study, we focus on the centralized IoT environment, which is an IoT distribution pattern.
The centralized IoT collects data from sensors and the collected data are processed in the central
process [28]. Especially, we focus on the features of system design to model various IoT environments,
including verification and decision-making at runtime. In addition, we propose a self-adaptive
framework that can be operated in low-computing devices. Therefore, the proposed approach can
be applied to smart homes and smart greenhouses. The proposed framework is based on MAPE
loop, which is a prominent control loop to organize self-adaptive software using four components:
Monitoring, Analysis, Plan, and Execute [5,29]. In addition, to address the limitations associated with
system design, we propose a self-adaptive software framework with finite-state machine design and a
game theoretical decision-making method. The finite-state machine design is based on the designs
presented in previous works (i.e., the RINGA framework [1,30,31]), while the strategy extraction
method is based on game theory (i.e., the Nash equilibrium). We performed empirical experiments in
various types of hardware environments and obtained reasonable results indicating that the proposed
approach can be applied at runtime. In addition, an IoT-based greenhouse case study was performed
to demonstrate the usability of the proposed approach.

The remainder of this paper is organized as follows. Section 2 presents a background on
self-adaptive software with IoT and game theory, and includes related work describing self-adaptive
software as a finite-state machine. Section 3 introduces the proposed framework. Section 4 presents the
empirical evaluations. Section 5 presents a simple IoT-based greenhouse scenario. Section 6 discusses
the limitations of the proposed approach and future work to overcome the limitations. Section 7 details
the conclusions of this study.

2. Background and Related Work

2.1. Self-Adaptive Software Framework with Internet of Things

Self-adaptive software can detect environmental conditions and alter its behavior or structure
if software requirements are violated [5]. Therefore, self-adaptive software includes a monitoring
process to observe the changes in its environment and structure. In addition, it can be used to
analyze symptoms associated with its environment and structure based on the monitoring data. If an
adaptation is required, adaptation strategies are developed and executed. Therefore, feedback loop
is crucial for the implementation of self-adaptive software. A prominent feedback loop, known as
the MAPE loop, is generally used in the adaptation process of self-adaptive software and autonomic
computing. The loop comprises the following four processes:

• The monitoring process is responsible for collecting and correlating data from the software and
its environment.

• The analyzing (detecting) process is responsible for analyzing the adaptive symptoms by
monitoring the data.

• The planning (deciding) process is responsible for determining the required changes and their
execution methods (i.e., it is responsible for determining adaptation strategies).

• The executing (acting) process is responsible for applying the adaptation strategy.

Several self-adaptive software studies have employed this loop [5,6,29–38], and the proposed
framework follows the MAPE loop as well. Various decentralized MAPE loop patterns have been
studied for self-adaptive software such as coordinated control, information sharing, master–slave,
regional planning, and hierarchical control [29]. In addition, the decentralized loop patterns are
combined with IoT distributed patterns such as centralized, collaborative, connected intranets,
and distributed [28]. In this paper, we propose a type of self-adaptive software based on MAPE
loop with a master–slave pattern.
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Various IoT studies that focus on self-adaptive software have recently been conducted.
Zhang et al. [7] proposed an inventory management system for a warehousing company with a
self-adaptive distributed decision support model. The proposed inventory management system
was simulated with inventory management scenarios using IoT technology. Lunardi et al. [8]
presented a decision support IoT framework with existing rule-based decision management systems
(i.e., COMPaaS [39] and COBASEN [40]); the framework was used to support the discovery and
selection of IoT devices for IoT applications. This paper does not directly mention self-adaptation.
However, a loop with an update mechanism was used as the rule-based reasoner. Mezghani et al.,
developed a set of autonomic cognitive design patterns associated with the process of designing
and developing a complex IoT-based system. The proposed design patterns employed a smart
monitoring system case study for the management of patient health evolution based on wearable
devices. Ouechtati et al. [11] presented an access control middleware for IoT, which can adapt to
the changes in its environment. The middleware includes a dynamic adaptation process of access
control rules that satisfy the requirements of IoT environments. Shekhar and Aniruddha [13] proposed
a dynamic data driven cloud and edge system (D3CES) to realize adaptive resource management.
D3CES comprises a feedback-based algorithm. The authors also developed a benchmark framework
for a cyber-physical system and an IoT application.

MAPE loop-based approaches also exist for IoT technologies [9,12,41]. Muccini et al. [12]
surveyed IoT distribution patterns and self-adaptation, and combined them in terms of their specific
characteristics. In addition, Muccini et al. proposed an IoT modeling framework for an emergency
handling system based on the MAPE loop. The framework was simulated with an IoT-based
forest monitoring system. Azimi et al. [9] presented a MAPE-K loop-based hierarchical computing
architecture (HiCH) for IoT-based health monitoring systems. The MAPE-K loop is a MAPE loop
with shared knowledge. However, the architecture of HiCH is suited for hierarchical partitioning
and machine learning-based data analysis. In addition, HiCH was employed in a case study to
monitor the detection of arrhythmia in patients. Ribeiro et al. [41] designed MAPE loop-based
management architecture patterns for an adaptation system in IoT environments. A self-protecting
architecture based on architecture patterns was developed and the results of the implementation
demonstrate that less memory was consumed, as compared to previous studies [42]. Welsh et al. [43]
proposed a self-adaptive system with goal-based requirement models to ensure self-explanation
at runtime. Self-explanation helps diagnose, understand, and explain emergent behavior using
simply-structured domain-specific language. Beal et al. [44] employed aggregate programming to
simplify the engineering and coordination of services in dynamic IoT environments. Aggregate
programming focuses on ensuring the simplified design, creation, and maintenance of IoT systems.
In addition, an aggregate programming approach was demonstrated in the Alchemist simulation [45],
which is an extensible meta simulator for pervasive computing. A service-based Internet of Service
(IoS) framework with a service model design was used to support automation planning (i.e.,
ASTRO-CAptEvo) [46]. ASTRO-CAptEvo uses a service model based on several characteristics that
are stateful, non-deterministic, and asynchronous. The framework was employed in a car logistics
scenario and demonstrated its adaptability in planning. Sylla et al. [47] designed a self-adaptive
framework for reliable multiple autonomic loops. The loops are based on MAPE-K and comprise
three patterns (i.e., parallel, coordinated parallel, and hierarchic). In addition, each loop was designed
based on the composition of automata-based controllers. Renart et al. [47,48] proposed a framework
to support dynamic data driven IoT applications called Pulsar. Pulsar leverages edge resources to
support location and content aware processing of data streams. Pulsar was designed using an extended
associative rendezvous (AR) interaction model [49] to support workflow topologies of data streams.
In addition, Pulsar comprises three different layers: infrastructure, federation, and streaming.

We summarize the previous studies and the proposed framework in Table 1. However,
each of these studies includes its own aspects and distinct characteristics in various platforms and
IoT environments. In this paper, we aim to support the IoT environment that includes several
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requirements, sensors, and actuators with central processing. Therefore, we focus on modeling,
verification, and decision-making for the target IoT environment at runtime in low-computing devices.
The modeling and verification are based on previous research [30,31], and the decision-making method
is based on game theory. Details associated with modeling, verification, and decision-making are
presented in Sections 2.2 and 2.3.

Table 1. Comparison of previous research and the proposed model.

Worked by Goal Lifecycle Approach

Zhang et al. [7]

Inventory management
systems with self-adaptive
distributed decision
support models

Loop with
update

- Artificial neural network for recognition of
scenarios
- Knowledge and rule-based decision-making

Lunardi et al. [8] Automated decision analytics
and support for IoT

Loop with
update - Rule-based reasoner

Mezghani et al. [10]
Autonomic cognitive design
patterns for smart IoT-based
systems

Loop with
update

- Design patterns for cognitive IoT-based
systems
- Patterns that provide generic and reusable
solutions

Ouechtati et al. [11] A framework for access
control in the IoT environment

Dynamic
adaptation
process
(loop)

- Dynamic adaptive process based on risk value,
politics, and rule sets

Muccini et al. [12] A framework for IoT
modeling

MAPE
loop

- Analysis of IoT and self-adaptation control
patterns
- Bridge and combine the IoT distribution
patterns and adaptation logic

Shekhar et al. [13]
A framework for adaptive
resource management in cyber
physical systems and IoT

Feedback
loop

- Collect data from cloud and edge resources
- Learn and enhance models
- Apply enhanced models in a feedback loop

Azimi et al. [9]
A hierarchical computing
architecture for IoT-based
health monitoring system

MAPE-K
loop

- A hierarchical computing architecture with
cloud and fog enabled IoT
- Closed loop for autonomic system
- Machine learning data analytics

Ribeiro et al. [42]
Management of architectural
patterns for self-adaptive
system in IoT

MAPE
loop

- An architectural pattern for self-adaptive
systems with a control loop

Welsh et al. [43]

A self-adaptive system with
goal-based requirements
models to provide
self-explanation at runtime

Loop with
update

- Goal-based model
- Simply structured domain-specific language

Beal et al. [44]

Aggregate programming with
simplified design, creation,
and maintenance for IoT
software systems

N/A
- Aggregate programming abstraction layers
- Field calculus constructs
- Building-block APIs

Bucchiarone et al. [46]

A service composition
framework with runtime
service composition in a
dynamic context

Loop with
update

- Service model with stateful, non-deterministic,
and asynchronous features

Renart et al. [14,48]
A data-driven framework to
support dynamic data driven
IoT applications

N/A
- Associative rendezvous interaction model -
Simple rule-based abstraction with two
different types of rules

Sylla et al. [47]
Self-adaptive framework
design with multiple
autonomic loops for reliability

MAPE-K - Multiple autonomic loops

Proposed Self-adaptive framework
for IoT

MAPE
loop

- Finite-state machine modeling for IoT
- Model-checking based runtime verification
- Game theory based decision-making method
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2.2. Self-Adaptive Software Modeling by Finite-State Machines

In this paper, a finite-state machine model based on our previous studies [30,31,38] is used
to describe and verify the self-adaptive software. Lee et al. proposed a framework with finite-state
machine to describe self-adaptive software (i.e., SA-FSM) in the RINGA framework [31]. The finite-state
machine is translated as an abstracted model in the form of an equation for runtime verification (i.e.,
A-FSM). The translation process comprises abstraction algorithms that are based on state elimination.
The abstracted model is used for runtime verification within the MAPE loop. The framework exhibits
reasonable experimental results and provides a guideline for modeling the self-adaptive software
based on finite-state machine models. The aforementioned study is modified in the present study and
its basic models are introduced in this section.

SA-FSM includes four types of states (satisfied, dissatisfied, adaptive, and normal) and two
transitions (normal and adaptive). The satisfied state is a set of end states in which the software
requirements are satisfied. In contrast, the dissatisfied state is a set of end states in which the software
requirements are not satisfied. The adaptive state is a set of states in which an adaptive activity can
be performed. The normal state comprises a set of states that do not affect software adaptation and
termination. In addition, an adaptive transition is an adaptive strategy trigger. Therefore, when the
software reaches the dissatisfied state, the adaptive strategy is triggered if it can be implemented.
Based on the state and transition types, SA-FSM can be described as follows:

SA-FSM is a tuple (S,→, s0, AP, L), where,

• S is a set of states
• S consists of four subsets: {Snormal , Ssat, Sdis, Sadaptive} ⊆ S
• →⊆ S× S is the transition relationship, and it is classified into two types: {→normal and→adaptive}
• →adaptive⊆ {Sdis × Sadaptive}
• s0 is the initial state
• AP is a set of atomic propositions
• L: S→ 2AP is a labeling function (2AP denotes the power set of AP)

In the RINGA framework, SA-FSM is translated into equations for runtime verification (i.e.,
A-FSM). An algorithm based on state elimination is employed for the translation and the equations
are used to verify the self-adaptive software at runtime by the MAPE loop. A-FSM comprises four
types of states (i.e., start, satisfy, dissatisfy, and adaptive) and two transitions (i.e., A-FSM and trigger).
The satisfy, dissatisfy, and adaptive states have the same meaning as in SA-FSM, whereas the start state
is an initial state of the A-FSM model. An A-FSM transition includes a path from the initial state to the
“satisfy” or “dissatisfy” states of SA-FSM. The definition of A-FSM transition is presented below using
the intuitive semantics of temporal modalities. Let m = (S,→, s0, AP, L) denote SA-FSM, and Path(δ)
denote a path that satisfies the temporal modalities δ.

δi =
⋃

Path(∃♦Ssat(i)) (1)

Ssat(i) indicates the ith satisfy state of SA-FSM. Notation ♦ indicates “eventually” (i.e., now or
eventually in the future), and ∃ indicates the existence of at least one path. Therefore, “∃♦Ssat(i)”
presents the existing path for reaching Ssat(i), if there is a path from the initial state to the satisfy state
of SA-FSM (i.e., Ssat). The function Path(δ) denotes a path that satisfies the temporal modalities δ,
and “Path(∃♦Ssat(i))” presents a path from the initial state to Ssat. Finally, Equation (1) indicates all
reachable paths to the ith state of Ssat(i).

ωj =
⋃

Path(∃♦Sdis(j)) (2)

The meaning of Equation (2) is similar to Equation (1); however, the end of the paths is not
denoted by Ssat but by Sdis . Therefore, Equation (2) indicates all reachable paths to the jth state of Sdis.

If set Ssat has n states, and set Sdis has m states, using δ and ω, the A-FSM transition is given by
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→A−FSM= {{δ1, ..., δn} , {ω1, ..., ωm}} (3)

A-FSM transition includes a pair of δi and ωj. Therefore, the transition denotes the set of all
reachable paths from the initial state to the states of Ssat and Sdis using definition of A-FSM transition.
A-FSM is described below.

A-FSM is a tuple (S,→, s0, AP, L), where,

• S is a set of states
• S is classified into three types of subsets, {Ssat, Sdis, Sadaptive} ⊆ S
• → is the set of transitions, and {→A−FSM,→trigger} ⊂→
• →A−FSM⊆ {Sstart × Sdis, Sstart × Ssat} is the transition relationship
• →trigger⊆ {Sdis × Sadaptive}
• s0 is the initial state
• AP is a set of atomic propositions
• L: S→ 2AP is a labeling function (2AP denotes the power set of AP)

The RINGA framework includes an abstraction algorithm to obtain A-FSM from SA-FSM.
However, the details of the algorithm are beyond the scope of this study [30,31]. This framework yields
reasonable experimental results at runtime verification with different model-checking tools. Moreover,
this framework considers modeling of self-adaptive software as a finite-state machine, suggesting
guidelines for modeling the finite-state machine and the runtime verification method. The concept of
RINGA framework and the modeling of self-adaptive software are applied in this study. However,
RINGA presents a modeling method and a runtime verification method for self-adaptive software
but the modeling method presents only an abstractive level. In addition, RINGA defines adaptation
strategies at design time. Therefore, a decision-making method is required to generate adaptation
strategies at runtime. In this paper, we focus on designing self-adaptive software in IoT environments
to improve SA-FSM and runtime decision-making using Nash equilibrium.

2.3. Nash Equilibrium

Nash Equilibrium was introduced by John Forbes Nash Jr. [50] and is used to analyze the results
of strategic interactions among diverse decision-makers. Furthermore, every finite game has a Nash
equilibrium. Therefore, if there are several decision-makers and institutions, the Nash equilibrium
provides forecasts [19]. In game theory, there are non-cooperative players who participate in a game
with their own strategies for different actions. The selection of strategies can affect another player’s
strategy. Each player strives to achieve an outcome with the largest possible payoff. Therefore, players
choose their strategies so that an outcome with maximum payoff can be realized.

If the players are in Nash equilibrium, then any player can select a better unilateral strategy.
In Nash equilibrium, no one can receive a better payoff by changing strategies because each
strategy provides the best response. Therefore, no players change their strategies and, consequently,
the strategies are solidified [18,50]. Based on these principles, the Nash equilibrium is described as
follows. Let (S, f ) be a game with n players where,

• S = S1 × S2 × · · · × Sn is the strategy set of profile
• Player i ∈ {1, · · · , n}
• f (x) = { f1(x), · · · , fn(x)} is the payoff function
• A payoff function is evaluated at x ∈ S
• xi is the strategy profile of player i
• x−i is the strategy profile of players other than i
• Player i selects strategy xi resulting in strategy profile x = (x1 · · · xn), and then player i obtains

payoff fi(x).
• x∗ ∈ S is a Nash equilibrium when ∀i, xi ∈ Si : fi(x∗i , x∗−i) ≥ fi(xi, x∗−i).

In the proposed approach, the Nash equilibrium is used to extract a strategy to adapt to an IoT
environment. Details of the applications of Nash equilibrium are presented in Section 3.3.
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3. Self-Adaptive Framework with Runtime Decision-Making Method

A self-adaptive software framework is proposed to design an IoT environment using the
finite-state machine and extract an adaptive strategy using the Nash equilibrium. Section 3.1 presents
an overview of the proposed method. Section 3.2 presents the modeling of the finite-state machine
based on SA-FSM. Section 3.3 presents a method to extract the strategies using the Nash equilibrium.

3.1. Overview

In this paper, we focus on certain IoT environments consisting of several sensors, actuators,
and requirements that should be dynamically satisfied at runtime. To accomplish this, a self-adaptive
software framework is proposed for an IoT environment with two phases: modeling and runtime.
The modeling phase is responsible for extracting the finite-state machine to describe the self-adaptive
software. The runtime phase comprises a MAPE loop and is responsible for runtime adaptation.
Figure 1 presents an overview of the proposed framework. As mentioned above, the modeling phase
is responsible for modeling an IoT environment as a finite-state machine. The modeling phase first
collects the available IoT devices and prepares a model design. The collected IoT devices are classified
into two types: sensor-device and act-device. The classified devices are further categorized based on
their abilities and related requirements. Details of device classification are described in Section 3.2.
Following the classification, a finite-state machine is constructed using the collected IoT devices. The
finite-state machine model is constructed based on the actions and relations between the collected
devices. The procedures involved in modeling a finite-state machine for IoT are described in detail
in Section 3.2. The final process of the modeling phase is the abstracting process. The abstracting
process abstracts the designed finite-state machine using a state elimination algorithm. Details of
the abstraction algorithms are described in previous studies [30,31]. It should be noted that the
abstracting process is executed only once if there is no change in the design of the finite-state machine.
Finally, the abstracted finite-state machine is transferred to the runtime phase. The designed and
abstracted models are used to evaluate the environmental conditions of the software in each cycle of
the MAPE loop.

Figure 1. Overview of proposed framework.

The runtime phase is responsible for runtime adaptation. As mentioned previously, this phase
comprises the MAPE loop. However, the MAPE loop can be organized into several patterns in the
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decentralized self-adaptive software and IoT [12,29]. The proposed framework consists of a verification
method (i.e., analysis process) and a decision-making method (i.e., planning process). The verification
method needs centralized data from multiple sensors (i.e., slaves for sensing) for runtime verification.
In addition, the decision-making method also needs centralized data to generate the most optimal
solution for adaptation. After the decision-making process, the optimal solution is executed through
multiple actuators (i.e., multiple operable slaves) in executing process. Therefore, the proposed
framework needs central processing for verification and decision-making, and multiple sensors and
actuators to collect data and execute adaptation strategy. Therefore, the proposed framework can be
classified as a centralized IoT pattern [28]. The master–slave MAPE loop pattern is appropriate for
the adaptation process [12]. Therefore, one master is responsible for the analyzation and planning
process, and multiple slaves (i.e., sensor-devices and act-devices) are responsible for the monitoring
and executing process. The monitoring process is responsible for the collection of data that describe
the environment and any internal changes. Environmental data are collected by multiple slaves
(i.e., sensor-devices). In addition, the monitoring process searches a new device that has potentially
been added in the finite-state machine. If a new device is detected, then remodeling is requested
by the modeling process. If the remodeling request is accepted, the modeling phase executes the
remodeling of the new device. Following the monitoring process, the analysis process is executed in
the master. The analysis process is responsible to analyze the symptoms associated with the adaptation
situation. In the proposed approach, analysis is performed by only evaluating the equations [30,31].
Consequently, the analysis process indicates that the self-adaptive software has reached adaptive
states and detects the condition to adapt. The analyzed results are transferred to the planning process.
The planning process is responsible for the formulation of adaptation strategies concerning the changes
and their implementation. In this study, we propose a decision-making method with the Nash
equilibrium, which can enable strategies to adapt to environmental changes. Details of strategy
extraction are described in Section 3.3. The last process of the runtime phase is execution, which
is responsible for activating the adaptive strategies. Therefore, if the planning process transfers an
adaptive strategy, the executing process activates the adaptive strategy through multiple slaves (i.e.,
act-devices) for runtime adaptation. Subsequently, the monitoring process is executed and the MAPE
loop continues.

3.2. Finite-State Machine Modeling for IoT Environments

We classified IoT devices as sensor-devices and act-devices for modeling IoT-based self-adaptive
software. A diverse range of devices exist within IoT environments (e.g., light sensor, humidity
sensor, light controller, speaker, and humidifiers). The devices can be classified into various categories.
However, only two types of IoT devices are used for finite-state machine modeling: sensor-devices
and act-devices.

• A sensor-device senses the changes in environment. Therefore, it must have embedded at least one
readable sensor-device such as light sensor, humidity sensor, and temperature sensor. In addition,
it is assumed that the sensor-device recognizes the requirement that is related to its sensed data.

• An act-device can change the environment. Therefore, it must have embedded at least one
physical-device such as an LED, a servomotor, or a fan. In addition, it is assumed that the
act-device recognizes the requirements that are associated with its operation.

In this study, a finite-state machine is used for modeling self-adaptive software in IoT
environments, and the finite-state machine is based on SA-FSM [30,31]. However, SA-FSM is modified
for IoT and it can be expressed as a tuple (S,→, s0, AP, L), where,

• S is a set of states
• The states are classified into eight types {Ssensor, Sreq, Ssat, Sdis, Sact, Sadapt, Sinc, Sdec} ⊆ S
• Sdis, Ssat, Sadapt are end states
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• →⊆ S× S is the transition relation, and it is classified into eleven types {s0 × Ssensor, Ssensor ×
Sdis, Ssensor × Sreq, Sreq × Ssat, Sreq × Sact, Sact × Sdis, Sact × Sinc, Sact × Sdec, Sinc × Sadapt, Sdec ×
Sadapt, Sadapt × Ssensor}

• s0 is an initial state
• AP is a set of atomic propositions
• L: S→ 2AP is a labeling function (2AP denotes the power set of AP)

As indicated by the tuple definition, a finite-state machine comprises nine states and eleven
transition types. The state set and related transitions include the following:

• Initial state (s0) is an initial state.
• Sensor-device state (Ssensor) is a set of sensor-device related states. In this state, the sensor-devices

must be related at least once. If a readable sensor-device is available, it reaches a requirement
state (i.e., Ssensor × Sreq). However, it is connected to a dissatisfied state (i.e., Ssensor × Sdis) if there
is no related sensor-device. Requirement state (Sreq) is a set of states that verify requirement
satisfaction. If the checked requirement is satisfied, the requirement state reaches the satisfied state
(i.e., Sreq × Ssat), else the adaptive state (i.e., Sreq × Sadapt).

• Satisfied state (Ssat) is a set of end states for which the software requirement is satisfied.
• Dissatisfied state (Sdis) is a set of end states for which the software requirement is not satisfied.

If the finite-state machine has no readable device (i.e., Ssensor × Sdis) or no possible adaptive action
(i.e., Sact × Sdis), the finite-state machine model reaches this state.

• Act state (Sact) is a set of states that check for an actable device. If there are no actable devices,
the model reaches the dissatisfied state (i.e., Sact × Sdis), else the increase or decrease state (i.e.,
Sact × Sinc and Sact × Sdec, respectively).

• Increase state (Sinc) and decrease state (Sdec) are the sets of act-device related states. In these
states, at least one actable device is related. If the finite-state machine reaches these states,
the related act-device is operated. These states then reach the adaptive state (i.e., Sinc × Sadapt and
Sdec × Sadapt, respectively).

• Adapt state (Sadapt) is one of the end state sets that denotes the possible adaptive activities.
Therefore, if the finite-state machine reaches this state, it means that the self-adaptive software
must adapt and adaptive strategies do exist. In addition, this state reaches the related requirement
sensor-device state to re-verify the requirement satisfaction (i.e., Sadapt × Ssensor).

In the proposed approach, reachable paths are extracted to reach the end states (i.e., Ssat, Sdis,
and Sadapt). In addition, the reachable paths are calculated at each MAPE loop to verify requirement
satisfaction. Figure 2 illustrates the graphical definition of the proposed finite-state machine. As shown
in Figure 2, most transitions are matched one-on-one. However, some transitions do not have
one-on-one matching owing to the reason discussed below. The initial state can relate to multiple Ssensor

states, which means that the initial state can be reached by several requirements. In addition, a Sact state
can relate to multiple Sinc and Sdec states because multiple act-devices can exist in a single requirement.
For example, if the requirement relates to illumination, several possible act-devices exist (e.g., LED,
natural light). Furthermore, the states Sinc and Sdec can be connected with multiple Sadapt states
because the operation of an act-device can affect several requirements. For example, if an act-device
can control windows, multiple requirements can be affected (e.g., light, temperature, and intensity of
dust). As mentioned in Section 3.1, the finite-state machine is abstracted for runtime verification and
the state elimination algorithm [30,31] is applied during modeling. There are three types of end states
in the finite-state machine model (i.e., satisfied requirement, dissatisfied requirement, and adaptable
state) and the abstracting process is performed for each end states. Finally, the paths from the initial
state to the satisfied, dissatisfied, and adaptable states are extracted and used for runtime verification
in the MAPE loop.
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Figure 2. Relationship of IoT-FSM state types.

3.3. Game Theoretic Decision-Making and Evaluation

In this section, we describe the use of Nash equilibrium for strategy extraction from the finite-state
machine model. Nash equilibrium is suitable for complete information game, implying that payout of
each player is fully known between players. However, as described in the previous section, this paper
focuses on centralized IoT environment. Thus, it is assumed that the central process already knows
the operation and affection among requirements and devices in the decision-making process (i.e.,
the planning process in the MAPE loop). In addition, we assume that there exists only legitimate
requirements and devices (i.e., there is no malicious user that interrupts decision-making); therefore,
centralized decision-making can extract unbiased adaptive strategies to satisfy the most number of
requirements. As described previously, an act-device can perform physical acts, affecting several
requirements. In other words, a requirement can include several act-devices and the related act-devices
can affect other requirements. Therefore, act-devices can be operated to satisfy requirements and the
operation of act-devices can affect several requirements. In addition, if the requirements are related
to overlapped act-devices, an act-device can adversely affect different requirements. In this case,
one requirement may be satisfied but others may not. Therefore, the execution of strategies must
effectively operate the act-devices to satisfy multiple requirements. In this context, the requirements
can be considered as a player and the act-device as a strategy of the player. The Nash equilibrium for
IoT is described as follows:

Let a player be a requirement and (S, f ) be a game with n requirements, where,

• S = S1 × S2 × · · · × Sn is the strategy set of profile
• Requirement i ∈ {1, · · · , n}
• f (x) = { f1(x), · · · , fn(x)} is a payoff function
• A payoff function is evaluated at x ∈ S
• xi is an act-device profile of requirement i
• x−i is an act-device profile of players other than i
• Requirement i operates act-device xi resulting in strategy profile x = (x1 · · · xn) and then,

requirement i obtains payoff fi(x)
• x∗ ∈ S is a Nash equilibrium for IoT when ∀i, xi ∈ Si : fi(x∗i , x∗−i) ≥ fi(xi, x∗−i)
• x∗ can be an operation candidate at runtime
• A strategy with the largest number of Nash equilibrium between the requirements is selected

and implemented
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Formally, if the players (requirements) reach Nash equilibrium, they cannot choose a new strategy
because no one can receive a better payoff by strategy selection. However, the Nash equilibrium in
the proposed model indicates candidate strategies because it denotes that there are strategies that can
satisfy multiple requirements. As described above, we choose Nash equilibrium to extract candidate
strategies for adaptation in runtime. However, the Nash equilibrium that can satisfy every requirement
may be nonexistent if many requirements need adaptation. In this case, some strategies with the
largest number of Nash equilibria can be the candidate strategies for adaptation (i.e., the last definition
of Nash equilibrium for IoT) because the candidate strategies may adapt several requirements even if
every requirement is not adaptable. However, there can be multiple equilibria (i.e., candidate strategies
for adaptation) at the same time. Then, a method to evaluate the strategies is needed to determine the
optimal strategy.

A method called strategy score (SS) is proposed for evaluating strategies. There are three major
conditions in this method, described as follows:

• The number of satisfied requirements (SR) is the number of requirements that may be satisfied by
the execution of a strategy. If an adaptation strategy satisfies multiple requirements, it is more
efficient than an adaptive strategy that satisfies lesser requirements.

• The number of related requirements (RR) is the number of requirements that may be affected by the
execution of a strategy. For example, if a strategy opens the windows to adjust indoor brightness,
it affects humidity, dust density, or temperature. In this case, the requirements of humidity,
dust density, and temperature comprise RR. It is more efficient to have fewer RRs.

• The number of act-devices (AD) is the number of act-devices that are executed by the adaptation
strategy. It is more efficient to have a smaller value of AD.

Equation (4) presents the calculation of the SS using SR, RR, and AD.

SS = α

{
log
(

SR + 1
RR + 1

+ 1
)}

+ β

{
log
(

1
AD + 1

+ 1
)}

(4)

The equation comprises the sum of two terms: requirement and act-device. The first term (i.e.,
log
(

SR+1
RR+1 + 1

)
) is related to requirement. Therefore, SR and RR are used. As mentioned above, it is

efficient when a strategy can satisfy several requirements (i.e., large value of SR) and affects few
requirements (i.e., small value of RR). Therefore, SR is divided by RR, and it takes a logarithmic
function for normalization. A value of 1 is added to prevent negative infinity output. The second term
(i.e., log

(
1

AD+1 + 1
)

) is related to act-devices. If a strategy can satisfy some requirements, a lower
value of AD is more efficient. Therefore, a reciprocal number of AD is used and a value of 1 is added
to prevent negative infinity output. The terms α and β are mediators used for adjust the power of the
other two terms. This equation denotes the strategy score of a strategy within the planning process of
the MAPE loop.

4. Experiment

A prototype of the proposed approach using JAVA 1.8.0 was implemented on different hardware
environments, as listed in Table 2. As mentioned above, we focus on proposing a self-adaptive
framework, with verification and decision-making, that can be operated by low computing devices,
and various hardware environments are considered (i.e., server, laptop, desktop, and smart phone).
The experiment aimed to evaluate the verification and decision-making performance of the proposed
framework in various IoT environments.
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Table 2. Details of hardware environments for performance measurement.

Hardware CPU Clock
(GHz)

Number of
CPU Core

Memory
(GB) Operating System

Laptop (Intel i5-5200U) 2.7 2 8 Windows 10
Desktop (Intel i5-4670) 3.4 4 16 Windows 10

Server (Intel Xeon E3-1230L v3) 1.8 4 4 Windows 10
Samsung Galaxy S8 2.31 8 4 Android 8.0.0

To perform the experiment, we randomly generated IoT environments using different numbers of
act-devices and requirements because, if there are more requirements and act-devices, the experimental
IoT environments are more complex. In the experimental environment, the number of sensor-devices
was not considered because we focused on runtime verification with abstraction process and
decision-making method in this study. However, a requirement should have at least one sensor-device
to detect environmental changes. Therefore, one sensor-device was assigned to each requirement of
the experimental environments. In addition, each requirement included at least one act-device and
the remaining act-devices were randomly assigned to the requirements. For example, when there
were two requirements and five act-devices were assigned in an experimental environment, only
two sensor-devices were assigned for each requirement to sense environmental changes, while two
act-devices were assigned for each requirement to adapt environmental changes and the remaining
three act-devices were randomly assigned for each requirement. The environment values (i.e., sensed
data) were randomly varied and iterated 100 times for each experiment. In other words, we executed
MAPE loops 100 times with different values. Three factors were measured: abstracting process
time, analyzing process time, and planning process time. The abstracting process time illustrates the
modeling time of the experimental environments; the analyzing process time denotes the verification
time for a model-checking method [31]; and the planning time indicates that an optimal solution must
be extracted based on the Nash equilibrium. However, we measured the time factors without initially
setting the process time (i.e., JVM loading time and application loading time) because the initial setting
processes were executed only once when the application started.

The first experiment involved ten fixed requirements and variable act-devices (20–50). Figure 3
presents the experimental results for the increasing numbers of act-devices. As expected, the method
required more time for a large number of act-devices. However, when the number of act-devices was 50,
the maximum average time for abstracting the finite-state machine was less than 8 ms and the analysis
time was less than 20 ms for low-computing power sources (i.e., Samsung Galaxy S8). In particular,
the planning time for extracting the strategies was higher than the other methods. However, it was
less than 500 ms for a high-computing environment and 3.5 s for a mobile device, even with 50 active
devices. The monitoring and executing times were ignored because the prototype neither read real
sensor values nor operated physical devices. Nevertheless, it was assumed that every factor was
calculated within reasonable time. However, the method must be optimized for low-computing power
devices (e.g., mobile device, Arduino, and Raspberry Pi).
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Figure 3. Results with fixed requirements and increasing number of act-devices.

The second experiment was performed using 40 act-devices and variable requirements. Figure 4
presents the experimental results. Similar to the previous experiment, the abstracting process required
more time when the number of requirements was large. However, the time for analyzing and planning
indicated a tendency to decrease after a rise because the interconnections between the requirements
were more complicated when the requirements affected each other. To analyze the designed finite-state
machine, it was abstracted to an equation (see Section 3.1). The abstracted equations indicate that all
reachable paths from the initial state to the end states (i.e., satisfied state, dissatisfied state, and adaptive
state), including the extraction of the reachable paths, are complex when there are many connections
between the requirements via the operation of act-devices because transitions connecting the operations
of act-devices (i.e., Sact × Sinc and Sact × Sdec) can be connected to several requirement adaptation
transitions (i.e., Sinc × Sadapt and Sdec × Sadapt). In addition, if there are many connections between
the act-device operations and the requirements, then there exist several reachable paths to reach the
adaptation state. Therefore, the abstracted equation becomes complicated when the interconnections
between the requirements from the designed finite-state machine are complicated. The results of
the analysis process also demonstrate a reduced tendency after 15 requirements owing to reduced
complexity because the experimental dataset has limited act-devices, which makes the requirement
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adaptation transitions (i.e., Sinc× Sadapt and Sdec× Sadapt) less complex. In addition, to extract the Nash
equilibrium, the possible actions for a requirement were compared with the possible actions for other
requirements. In contrast, extracting the Nash equilibrium required less time when the interconnections
between the requirements were not complicated (i.e., the result of 5 and 30 requirements in Figure 4).
The reasons for this can be attributed to the results of the planning process because the verification of the
relationship between the requirements (i.e., evaluating a payoff between relationships) and the possible
act-device operations is required to extract the strategies. The complexity of the relationship increased
when there was a significant interference between the relationship via possible act-device operations.
However, the results of the planning process also show similar tendency after 15 requirements owing
to a limited number of act-devices. The results of the second experiment comprehensively demonstrate
that the analysis and planning times are affected by the complexity of the relationship between the
requirements. Nevertheless, the second experiment demonstrated that the proposed approach is
reasonable even when the requirement interconnections are complicated.

Figure 4. Results with fixed act-devices and increasing requirements.
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5. Case Study: IoT Based Smart Greenhouse

In this section, a case study is described to understand the proposed approach: IoT-based smart
green house. A small-scale smart greenhouse environment was designed with three requirements,
three act-devices, and six sensor-devices. It was modeled based on the proposed modeling method.
In addition, three scenarios are described to illustrate the use of game theory decision-making method.

5.1. Overview of Case Study

The case study environment consisted of three requirements (i.e., light intensity, humidity,
and temperature), three act-devices (i.e., light controller, fan, and windows) and six sensor-devices (i.e.,
illumination, humidity, and temperature sensor for inside and outside). Figure 5 presents an overview
of the proposed case study. As shown in Figure 5, the intensity of light, humidity and temperature
were considered as the requirements to provide an optimal growth environment to the crops. If the
light intensity inside the greenhouse is between 110 and 150 lux, the light requirement is satisfied.
Similarly, if the humidity is between 32% and 34%, the humidity requirement is satisfied. In addition,
if the temperature is between 20 and 24 °C, the temperature requirement is satisfied. The status of the
requirements is checked by the illumination, humidity, and temperature sensors in the greenhouse.
However, there are three act-devices: light controller, fan, and window. The light controller can directly
control the light intensity in the greenhouse and the fan can control the temperature by the on (falling
temperature) and off (maintain temperature) states, while the window can control all requirements
via the external situation to the greenhouse. For example, if the humidity requirement is to increase
the humidity in the greenhouse and the humidity outside is higher than inside, the requirement can
be adjusted by opening the window. Therefore, the lines that connect the sensors and an act-device
(e.g., light controller and window) indicate a correlation between the connected devices. In addition,
the dotted lines indicate that an act-device may control the related requirements via connected external
environments (e.g., connected with dotted line).

Figure 5. Overview of an IoT-based smart greenhouse.

In the case study, we assumed that the light controller was designed with an operation range
between 0 and 240. The minimum value 0 implied that the device was turned off, whereas the
maximum value 240 implied that the device operated at full capacity. The operation range of the
lamp was 20. Thus, the lamp included 12 levels (i.e., 0, 20, 40, 60, . . . , 240) and the operation of
the light controller affected the greenhouse immediately. The fan was operated at two levels (i.e.,
on and off). In addition, the windows included two operations (i.e., open and close), which may
affect the greenhouse based on the external environmental status. Three scenarios were created
to measure the adaptability based on a game theory strategy extraction method (see Section 5.3).
The scenarios included different numbers of satisfied requirements: the first scenario only included
one dissatisfied requirement, the second scenario included two dissatisfied requirements, and the third
scenario included all dissatisfied requirements.

• Scenario #1: The light requirement is not satisfied (80 lux), but the humidity (33%) and
temperature (22 °C) requirements are satisfied. The windows are closed, and the level of the light
controller is 4 (80 lux). In addition, the fan is turned off.
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• Scenario #2: The light (80 lux) and humidity (31%) requirements are not satisfied, but the
temperature (22 °C) requirement is satisfied. Both dissatisfied requirements must be increased for
adaptation. The windows are closed, and the level of the light controller is 4 (80 lux). In addition,
the fan is turned off.

• Scenario #3: All requirements are not satisfied: light (80 lux), humidity (30%), and temperature
(26 °C). The light and humidity requirements must be increased for adaptation, but the temperature
requirement must be decreased for adaptation. The windows are closed, and the level of the light
controller is 4 (80 lux). In addition, the fan is turned off.

In addition, we designed varying external environments to demonstrate adaptability across
various environments: one comprised higher environmental values (i.e., humidity, temperature,
and light intensity) compared to values for requirements satisfaction (i.e., 24 °C, 34% and 150 lux),
and the other comprised lower environmental values compared to values for requirements satisfaction
(i.e., 20 °C, 32% and 110 lux). Therefore, each scenario was associated with each external environment,
and several cases were simulated in the case study. The environments are described below.

• External environment #1: External light is brighter than the light inside (180 lux), and the external
humidity and temperature are higher than that of the internal environment (36% and 30 °C).

• External environment #2: External light is darker than the light inside (20 lux) and the external
humidity and temperature are lower than that of the internal environment (25% and 15 °C).

5.2. Modeling of Finite-State Machine

Based on the smart greenhouse, the finite state machine model and abstracted model was extracted,
as shown in Figure 6. The finite state machine model began at the initial state (i.e., S0). There were three
requirements in the case study and the status of the requirements was obtained by the sensors (i.e., S1,
S7, and S13). If there was no connected readable device (i.e., e2, e9 and e16), the state of the model was
dissatisfied (i.e., S3, S9 and S15) and terminated. Otherwise, the status was checked (i.e., S2, S8 and
S15) and, if the requirements were satisfied, the state was terminated with after the requirement was
satisfied (i.e., S4, S10 and S16). The act-devices were checked when the requirements were dissatisfied
(i.e., S4, S10 and S16) and, if there were no operable act-device (i.e., e5, e12 and e19), the state ended
with dissatisfaction (i.e., S3, S9 and S15). However, the state associated with checking the act-device
was connected based on the operations of the act-devices (i.e., S19 to S24) and each operation state was
connected with adaptable states (i.e., S6, S12 and S18) based on adaptive transition (i.e., e23, e24, e27,
e28, e31, e32, e35, e36, e39 and e40). The adaptable states were connected by checking the sensor states
(i.e., e6, e13 and e20) and re-checking was performed to confirm that the requirements were satisfied.
The designed finite state machine model was abstracted and the equations (i.e., abstracted transitions)
were extracted for runtime verification. As mentioned in the previous section, the abstracted model
was used to verify the satisfaction of a requirement in the analysis process in MAPE loop at runtime.
If the abstracted model reached the satisfied state (i.e., S4, S10 and S16), the requirements were satisfied.
In contrast, if the abstracted model reached the dissatisfied state (i.e., S3, S9 and S15), the requirement
was dissatisfied. In addition, reaching the adaptable states (i.e., S6, S12 and S18) indicated that the
requirement was dissatisfied but adaptable strategies may exist. Therefore, an optimal solution was
needed for adaptation when the model reached an adaptation state. The solution was extracted by
the proposed game theoretic decision-making method. All transitions of the finite state machine are
expressed as 0 or 1, and the abstracted transition results present the possible ways of reaching each
end state [31].
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Figure 6. Modeling results of case study.

5.3. Game Theoretic Decision Making

A payoff matrix is a visual representation for making strategic decisions involving two players
or groups in game theory. The matrix is described with related players, strategies of the players,
and the payoff results. The players are positioned in the top rows and left column, which list each
player’s strategies. The payoffs of the row player are always listed as the first value in each cell. Thus,
the payoffs of the column player are always listed as the second value in each cell. Figure 7 presents an
example of a payoff matrix and the example describes the game “Rock, Scissors, Paper”. The results of
the game are win, lose, and tie, and the payoffs are 1, −1, and 0, respectively.

Figure 7. Example of a payoff matrix.

In the case study, we assumed that the results of the payoff matrix were “positive for requirement
satisfaction”, “negative for requirement satisfaction”, and “no effect”, and the values were “1”, “−1”,
and “0”, respectively. In the first scenario, a payoff matrix was presented with a strategy score of
the external environments, as shown in Figure 8. In this scenario, only the light requirement was
not satisfied, and, therefore, strategies associated with the light requirement were considered in the
payoff matrix. In the first external environment, there were two strategies that could be used for
adaptation within the Nash equilibrium: “increase light using light controller” and “open windows”.
Both strategies involved the operation (i.e., AD in strategy score) of one device, but the former had
fewer related requirements (i.e., RR in strategy score). In other words, there was a possibility that the
latter may affect the humidity and temperature requirements. Therefore, the former strategy exhibited
a higher score than the latter. Thus, “increase light using light controller” was selected as the optimal
solution. However, in the second external environment, the scenario included only one strategy:
“increase light using light controller”. Therefore, the strategy was chosen as the optimal solution.
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Figure 8. Payoff matrix for Scenario #1 (α = 0.5 and β = 0.5).

In the second scenario, two requirements were not satisfied (i.e., light and humidity requirements),
and a strategy was needed to adapt to the requirements. A payoff matrix is presented in Figure 9. There
were two conflicting operations (i.e., open windows and close windows), which were discarded from
the payoff matrix. However, in the first external environment, there were two strategies within the
Nash equilibrium: “increase light controller and open windows” and “only open windows” (i.e., both
requirements activate opening the windows). Both strategies satisfied the requirements and, therefore,
the strategy score was calculated to determine the optimal solution. Considering the results of the strategy
score, the latter (i.e., only opening the windows) was selected as the optimal solution because the optimal
solution could satisfy both requirements by activating one act-device (i.e., windows). The other strategy
could also satisfy both requirements, but the strategy required the operation of two act-devices for
adaptation. In the second external environment, there was no solution that satisfied both requirements,
and thus there was no Nash equilibrium between both requirements. Therefore, strategies with the
largest number of Nash equilibrium were ideal candidates for adaptation: “increase light controller and
open windows” and “increase light controller and keep windows closed”. Both candidate strategies
satisfied only the light requirement, but the latter activated only one device (i.e., the light controller
was activated, and the windows was already closed when the scenario began). In addition, the latter
included fewer related requirements (i.e., RR in strategy score) than the former. Therefore, the strategy
“increase light controller and keep windows closed” was chosen as the optimal solution.

In the third scenario, none of the requirements were satisfied. Therefore, the payoff matrix was
associated with three requirements and related act-devices. A payoff matrix of the scenario is presented
in Figures 10 and 11. There were 14 conflicting operations related to the window and those operations
were discarded in each payoff matrix. In the payoff matrix with the first external environment (See
Figure 10), there were two strategies within the Nash equilibrium: “increase light controller, open
windows and turn on fan” and “open windows and turn on the fan”. Both strategies could satisfy
all requirements and the latter was selected as the most optimal strategy, considering the results of
strategy score because the optimal strategy was satisfied by activating fewer act-devices. However, in
the third scenario with the second external experiment, there was no Nash equilibrium for satisfying
all requirements, and thus the candidate strategies with the largest number of Nash equilibrium were
extracted, as shown in Figure 11. There were three candidate strategies for adaptation: “increase
light, open windows and turn on fan”, “increase light, open windows, and keep fan turned off”, and
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“increase light, keep windows closed, and turn on fan”. All candidate strategies could satisfy the light
and temperature requirements, but the humidity requirement was not satisfied; therefore, all candidate
strategies included the same number of satisfied requirements (i.e., SR in the strategy score). However,
the third candidate strategy included minimal act-device operations (i.e., AD in the strategy score) and
lower related requirements (i.e., RR in the strategy score) by maintaining closed windows. Therefore,
the third candidate strategy had the highest strategy score and was selected as the optimal solution.

Figure 9. Payoff matrix for Scenario #2 (α = 0.5 and β = 0.5).

Figure 10. Payoff matrix for Scenario #3 with external environment #1 (α = 0.5 and β = 0.5).
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Figure 11. Payoff matrix for Scenario #3 with external environment #2 (α = 0.5 and β = 0.5).

The results of the case study present the proposed framework design models and the optimal
solution chosen. As shown in the modeling results, the proposed model can determine the relationship
between the devices and provide information (i.e., abstracted model) for runtime verification. In addition,
the results of strategy selection illustrate the measurement of the effectiveness of the adaptive strategies.

6. Discussion

In this section, we present a discussion on the limitations of the proposed framework and the
future work to overcome the limitations. First, we present a limitation and future work on modeling
and decision-making. In the proposed framework, modeling classifies IoT devices as act-devices
and read-devices, and those devices need related requirement information to design the system
model. In addition, the relation between the devices and requirements is used in the decision-making
method to determine the Nash equilibrium. Human intention or predefined information is required to
determine the relationship between the devices and the requirements of the devices. In addition, there is
no way to verify whether the designed relationships are really affected by each other. A relationship
between the requirements via the operations of act-devices is crucial because, if the relationship is
overlooked in the design phase, it can lead to wrong verification and decision-making. To address
this limitation, we plan to propose an automation method to determine and verify the relationship
between the IoT devices and the requirements to prevent overlooked system modeling.

The second limitation is related to the extraction of an adaptive strategy. In the proposed method,
a game theoretic decision-making method is used to extract strategy candidates and the optimal
solution. The decision-making method utilizes the status of act-devices and related environment data
when adaptation is needed, and the adaptive strategies are generated to adapt to a specific moment.
In other words, the results of decision-making are only considered as adaptations for situations in the
present and not in the future. Therefore, the execution of the optimal solution can have a negative
effect on the future. Accordingly, future adaptation must be considered in the decision-making method.
To address this limitation, we plan to improve the decision-making method by estimating the changes
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that may occur in the future using machine learning. Particularly, the concept of reinforcement learning
can be used to extract and make adaptive strategies.

The third limitation is related to the robustness of the decision-making method. In the proposed
method, we assume that players (i.e., requirements) are rational players, which are legitimate users in
Nash equilibrium. However, there may exist a malicious player who aims to increase the costs incurred
by the rational players [51,52]. If malicious players exist in the proposed decision-making method,
then an incorrect adaptation may occur by fabricating strategies (i.e., act-devices) and information for
decision-making (i.e., sensor-devices). To address this limitation, we plan to improve the proposed
decision-making method by considering malicious players in an IoT environment. In addition,
to prevent the malicious player, we also consider the authentication and authorization methods
in the design phase of the proposed framework.

The fourth limitation is related to the management of sensor-devices. In this paper, we focus
on modeling, verifying, and decision-making for centralized IoT environment with low-computing
devices. Hence, sensor-related optimization is pretermitted. However, generally an IoT environment
consists of multiple sensor-devices and the sensing process is an important part of an IoT environment.
Therefore, several optimization processes (e.g., merging, transmitting, etc.) may be considered in
the proposed framework. To address the limitations of sensor optimization, we have an initial plan
to improve the proposed finite-state machine model with sensor optimization. The verification and
decision-making methods will be improved gradually.

7. Conclusions

Several IoT frameworks include various requirements to accomplish different objectives in a
changing environment, and the requirements must be dynamically satisfied at runtime. To address
this problem, we propose a self-adaptive framework for strategy extraction with verification in an
IoT environment at runtime. The proposed framework comprises two phases: modeling and runtime.
The modeling phase is responsible for finding an available IoT device and building the system
model. To build the system model, a finite-state machine is proposed. After the modeling process,
an abstracting process is executed to abstract the built model into an equation form using a state
elimination algorithm [30,31]. The abstracted results are transferred to the runtime phase. The runtime
phase includes a MAPE loop. In the monitoring phase, environmental data are collected from available
sensor devices and transferred to the analyzing phase. The analyzing phase then calculates the
equations extracted in the modeling phase and verifies the satisfaction of the requirements at runtime.
In the planning process, the adaptive strategies are extracted using the proposed Nash equilibrium.
The strategies are evaluated in the planning process and the most efficient strategy is executed in
the execution process. In this study, the suitability of the proposed framework was demonstrated
using experiments, which showed that the proposed framework can be applied at runtime, yielding
reasonable results in terms of computation time. In addition, we propose a simple IoT-based smart
green house to understand the procedures associated with modeling and strategy extraction of the
proposed framework. Moreover, we present a discussion on the limitations of the proposed framework,
including the future work to address the limitations discussed.

In future work, optimization of the proposed method will be performed, particularly the planning
process, such that reinforcement learning can be applied to the proposed framework to implement
it in a physical environment [53,54]. In addition, we will improve the proposed approach using an
automation method to generate the relationships between the IoT devices and the requirements.
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